STUDY MODULE DI	ESCRIPTION FORM		
		Code 1010324381010321573	
Field of study	Profile of study (general academic, practical)	Year /Semester	
Electrical Engineering	general academic	4/8	
Elective path/specialty	Subject offered in:	Course (compulsory, elective)	
Measurement Systems in Industry and	Polish	obligatory	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	part-time		
No. of hours		No. of credits	
Lecture: 9 Classes: - Laboratory: 18	Project/seminars:	- 3	
Status of the course in the study program (Basic, major, other)	(university-wide, from another f	ield)	
other	ersity-wide		
Education areas and fields of science and art	ECTS distribution (number and %)		
technical sciences		3 100%	
Technical sciences		3 100%	
Responsible for subject / lecturer:		1	
dr hab. inż. Andrzej Odon			

dr hab. inż. Andrzej Odon email: andrzej.odon@put.poznan.pl tel. 616652599 Wydział Elektryczny ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of algebra, mathematical analysis, physics, electrical engineering, electronics, computer science, and metrology Basic knowledge in the scope of electronic analog circuits and digital techniques
		Basic knowledge in the scope of electronic analog circuits and digital techniques
2	Skills	Ability of the efficient self-education in the area concerned with electronic processors of signals
3	Social competencies	Awareness of the necessity of broadening of the competencies in the field of electrical engineering and willingness to cooperate in a team

Assumptions and objectives of the course:

- $\hbox{-} Knowledge of characteristics and applications of analog, analog-to-digital and digital-to-analog converters.}\\$
- Knowledge in the scope of modern tecniques of measuring data processing

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Ability to explain the principles and techniques of measuring signals acquisition for applications in industry and biomedical engineering [K_W03 +]
- 2. Ability to describe the importance and the application possibilities of present measuring systems [K_W14 ++]

Skills:

- 1. Ability to design measuring systems creatively, using possibilities offered by new technologies, taking into account limitations of current aktualnego status of knowledge and techique [K_U3 ++, K_U2 +]
- 2. Ability to work iindependently and as a team in design and construction companies [K_U05+]

Social competencies:

- 1. Ability think and act enterprisingly in the area of measuring systems to be used in industry and biomedical engineering [K_K01 +]
- 2. Understanding the need of broad popularization of the knowledge concerned the area of simple and complex measuring systems [K_K05 +]

Assessment methods of study outcomes

Faculty of Electrical Engineering

Lectures:

- evaluation of the knowledge with an exam related to the content of lectures (test, computational and problem questions), awarding marks in laboratory exercises)
- continuous estimation in all classes (awarding attendance in lectures, activity and quality of perception).

Laboratory exercises:

- continuous estimating with the tests,
- awarding the skill increase,
- the evaluation of knowledge and skills connected with the measuring tasks and prepared reports

Course description

Updating 2017:

Methods of education are orientated to students to motivate them to participate actively in education process by discussion and reports.

Lectures:

Multimedia presentations expanded by examples shown on a board. Activity of students is taken into consideration in final students evaluation. Theoretical questions are presented in the exact reference to the practice.

Laboratory:

Detailed reviewing of particular exercises reports. Realization of laboratory tasks in teams, taking into account the specific computational experiments covering:

- Analog converters of electrical signals: operational amplifiers to be used as V/V, I/U, U/I converters; detectors of voltage peak and RMS values; sample-and-hold converters.
- Digital-to-analog converters: parameters, functional components, converters with reference voltage source, converters with current switch over.
- Analog-to-digital converters of voltage: parameters, functional components, errors of processing, different means of processing: double-integration, compensating, flash, sigma-delta, and other.
- Experimental studies of selected types of electronic converters of signals.

Basic bibliography:

- 1. Z. Kulka, A. Libura, M. Nadachowski, Przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ, Warszawa 1987
- 2. U. Tietze, Ch. Schenk, Układy półprzewodnikowe, WNT, Warszawa 2001
- 3. J. Zakrzewski, Czujniki i przetworniki pomiarowe, Wyd. Politechniki Śląskiej, Gliwice 2004

Additional bibliography:

- 1. J. Jakubiec, J. Roj, Pomiarowe przetwarzanie próbkujące, Wyd. Politechniki Śląskiej, Gliwice 2000
- 2. Denton J. Dailey, Electronic Devices and Circuits, copyright 2001 by Prentice-Hall, Inc., Upper Sadle River, New Jersey 07548, USA. Warszawa 2002.

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures	9
2. Participation in laboratory classes	18
3. Participation in consulting with the lecturers	3
4. Preparation to laboratory exercises and preparation of the reports	15
5. Preparation to the exam	10

Student's workload

Source of workload	hours	ECTS
Total workload	55	3
Contact hours	3	1
Practical activities	33	2